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Near-inertial oscillations associated with downward energy propagation are com- 
monly observed in the upper ocean. Stern (1977) has suggested that these observations 
may be internal-inertial waves over-reflected from the shear zone a t  the base of the 
mixed layer. In  this paper we develop a criterion for over-reflection as a function of 
wavenumber and frequency for a class of shear flows in the mixed layer. By examining 
the vertical profile of the vertical wave action flux we demonstrate that the source 
of the over-reflection is the shear a t  the base of the mixed layer, which is maintained 
by the wind-induced turbulent Reynolds stress, here parametrized as a body force. 
The relationship between over-reflection and the wave-induced Lagrangian-mean 
flow is determined. We also determine a criterion for unstable waves, and show that 
these are contiguous in wavenumber-frequency space with points of resonant 
over-reflection. However, the growth rates of these unstable waves are quite small, 
and in practice unstable waves will be indistinguishable from waves generated by 
over-reflection. 

1. Introduction 
Near-inertial oscillations are a prominent feature of upper-ocean observations. 

Often these observations also show a dominant upward phase propagation implying 
downward energy propagation (see e.g. Leaman & Sanford 1975; Rossby & Sanford 
1976; Fu 1981). Thus there is evidence for the generation of internal-inertial waves 
by the action of the wind stress on the ocean surface. Pollard (1970) has developed 
a model in which the wind stress is parametrized as a body force acting throughout 
the mixed layer, and has demonstrated that wind stress transience can generate 
near-inertial oscillations in the upper ocean with amplitudes consistent with observa- 
tions (Pollard & Millard 1970). Kroll (1975) proposed an alternative model in which 
the forcing was due to the Ekman suction velocity arising from a divergence in the 
Ekman transport. Both these models produce internal-inertial waves whose horizontal 
scale is that of the imposed wind stress. 

However, Stern (1977) has pointed out that observed internal-inertial waves often 
have horizontal scales much smaller than the gross dimensions of atmospheric forcing. 
Hence he proposed an alternative model in which the wind stress acts to produce a 
shear flow within the mixed layer. Internal-inertial waves incident on this shear layer 
from below can then be over-reflected in some circumstances. For certain values of 
the wave frequency and horizol;ftal wavenumber the reflection coefficient was found 
to be infinite corresponding to resonant over-reflection. The preferred horizontal scale 
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for these waves is ( NH)2  (f U)-l ,  where N is the Brunt-Vais&la frequency in the region 
below the mixed layer, H is the mixed-layer depth, f is the Coriolis parameter and 
77 is a typical speed for the shear flow in the mixed layer (i.e. 7(p0fH)- l ,  where 7 is 
the wind stress). For typical oceanic parameters this horizontal scale is smaller than 
the dimensions of atmospheric systems. The corresponding wave frequencies are close 
to the inertialfrequency ( I  .-/f 1 - 1 scales with U(NH)- l ,  where cr is the wave frequency). 
Unlike the models of Pollard (1970) or Kroll (1975), this over-reflection mechanism 
for the generation of internal-inertial waves does not require the presence of either 
wind-stress transience or horizontal variability. Instead Stern’s model requires only 
a steady wind stress and the horizontal scale of the waves is determined intrinsically. 

In  this paper we propose to re-examine and develop Stern’s model. In  $2 we 
formulate the linearized equations of motion and determine the criterion for 
over-reflection for a number of typical mixed-layer shear flows, including one case 
considered by Stern. One of the interesting features of the over-reflection mechanism 
considered here is that, unlike most examples of over-reflection found in the literature 
(Acheson 1976), i t  does not require the presence of a critical layer. In  order to 
understand this aspect and to determine the mechanism for over-reflection in this 
present case, we examine the vertical wave action flux. Although this is constant in 
the region below the mixed layer, it  is not constant within the mixed layer itself owing 
to the presence of the shear flow which is maintained by a body force which in turn 
is a parametrization of the turbulent Reynolds stress induced by the applied wind 
stress. By examining the vertical dependence of the vertical wave action flux we show 
that the source of over-reflection is the shear a t  the base of the mixed layer. 

With the development by Andrews & McIntyre (1978a, b )  of a general theory of 
wave-mean-flow interaction and wave action, we are in a position to put the 
wave action considerations of $ 2 into a more general setting. Hence in $ 3 we derive 
the wave action equation for a more general class of waves than that considered in 
$ 2, and also describe its relationship to the wave energy equation. Then in $ 4 we 
derive the equations for the wave-induced Lagrangian-mean flow, and show how this 
is related to divergence of wave action flux. I n  this section we also obtain the total 
energy equation and its relationship to wave action. 

Finally in $5  we return to the formulation of $2 but instead of looking for neutral, 
over-reflected waves we search for unstable waves. We show that resonantly 
over-reflected waves are contiguous in frequency-wavenumber space with unstable 
waves. However, for typical oceanic parameters, we find that these unstable waves 
have very small growth rates, and in practice will be indistinguishable from waves 
produced by over-reflection. 

2. Linear theory 
The coordinate system is described in figure 1. Within the mixed layer (0 < z c H )  

the basic state shear flow uo(z) has components uo(z) and v0(z )  in the 2- and y-directions 
respectively. The shear flow is maintained by the stress Fo(z) whose components are 
Fo(z) and Go(z), where 

(2.1) 
aF0 aG.0 

- P o f W o  = 1 Pofuo = x. 
At the top of the mixed layer ( z  = H )  Fo equals the wind stress z. At the base of the 
mixed layer ( z  = 0) and throughout the stratified ocean ( z  < 0) both Fo and uo vanish. 
It follows that the wind stress is given by the Ekman transport re€ation 

(2.2) 
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FIGURE 1 .  The coordinate system. 

Here k is a unit vector in the z-direction. In  the mixed layer the density po is constant, 
but in the stratified ocean ( z  < 0) we shall assume that the Brunt-Vaisala frequency 
N is constant, where po N 2  = -gdpo/dz. We shall also assume that both po and u, 
are continuous functions of z ,  and in particular that they are continuous at z = 0. 

We shall denote the linearized perturbations to this basic state with a subscript 
1.  Using the Boussinesq and hydrostatic approximations, the linearized perturbation 
equations are 

--+wl--fvl+--l D ~ ,  auo 1 aP = 0, 2 + ~ l - + + f ~ l + - -  Dw avo 1 aP = 0, (2.3a, 6) 
Dt a2 Po ax Dt az Po aY 

aul av awl - 
g p l + - = O ,  aP1 2 0 - N 2 w 1 = 0 ,  -+--I+--0, ax ay az (2.3 c-e) 

az Dt Po 

where 
~a a a - Dt = ~ + u o - + v o -  

ax ay 
Note that in the mixed layer (0 < z < H )  po is a constant and so N is zero, while in 
the stratified ocean uo and vo are zero. We shall find i t  useful to reformulate these 
equations in terms of the Lagrangian particle displacements tl, rl and 6,. I n  $ 4  we 
shall define these precisely using the generalized Lagrangian-mean formulation of 
Andrews & McIntyre ( 1 9 7 8 ~ ) .  Here it suffices to note the linearized relations 

It may then be shown that (2 .3~-f )  become 

(2.4 a-c) 

(2.5a, b)  

(2.5c, d )  
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The boundary conditions are that Cl = 0 a t  z = H ,  and that yl and p ,  are continuous 
at z = 0. As z+- co we shall specify an incident wave, and require the remaining part 
of the solution to be outgoing. 

Before proceeding with the analysis, we shall comment on the various approxi- 
mations that have been used here. The Boussinesq approximation involves the 
neglect of the density fluctuations in ( 2 . 3 a ,  b ) ,  and requires that P H g - ‘  4 1 ; this 
condition is readily met in oceanic conditions. The hydrostatic approximation 
involves the neglect of the vertical acceleration in (2 .3c ) ,  and requires that g2 4 N 2  
where cr is the wave frequency, and also that I1HI 4 1 ,  where I is a horizontal wave- 
number. These conditions are verified a posteriori as our solutions are for wave fre- 
quencies (r close to the inertial frequency f, withf2 4 N 2 ,  and have a large horizontal 
wavelength compared with the mixed-layer depth. The hydrostatic approximation 
also involves the neglect of the horizontal component of the Earth’s rotation in 
( 2 . 3 a - c ) ;  this can be justified in midlatitudes for near-inertial frequencies of large 
horizontal scale. Finally, the rigid-lid condition (i.e. Cl = 0 a t  z = H )  is justified when 
the divergence parameter f2(gH12)-l 4 1 ,  and this we have verified a posteriori. 

Next we seek solutions of the form 

5, = & ( z )  exp (is) + c.c., etc., ( 2 . 6 a )  

where 
s = kx+ly-cTt-e.  (2 .6b )  

Here 8 is a phase-shift parameter introduced so that we can define ensemble averages; 
for solutions of the form ( 2 . 6 ~ )  these averages are equivalent to time or space 
averages, but in $9 3 and 4 we shall extend the definition of an ensemble average. From 
( 2 . 6 ~ )  it follows that 

where 
w = a-kuo-lvo. 

( 2 . 7 a )  

(2.7 b)  

( 2 . 7 ~ )  

( 2 . 7 d )  

(2 .7e )  

Equations (2.7c, d )  form a pair of coupled equations for 
component of wave action flux is 

and The vertical 

B, =-21m(fi1&). 

Using (2 .7c ,  d ) ,  it  follows that 

where 

(2 .9b)  
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For solutions of the form (2 .6a) ,  wB, is the vertical wave energy flux. In  z < 0, D 
is zero and B, is constant ; since w = a and is also constant, the sign of B, determines 
whether or not the solutions are outgoing. However, in the mixed layer (0 < z < H )  
D is generally non-zero, and wave action flux is not constant. 

I n  z < 0, the solution of (2.7c, d) is 

gl = I exp (imz) + R exp ( - imz), (2.10a) 

where 
m2(a2-fz) = N2(k2+12) and a m  < 0. (2.10b, c) 

Here m is the vertical wavenumber, and its sign has been chosen so that I is the 
incident-wave amplitude and R is the reflected-wave amplitude; note that the 
vertical group velocity is - (am)-l (a2 -f”). The vertical wave action flux is 

(2.11) 

The vertical wave energy flux is uB3, and the criterion for over-reflection is aB, < 0 
in z < 0. Since B, vanishes a t  z = H ,  a necessary condition for over-reflection is that  
uB, < 0 somewhere in 0 < z < H ,  or that aD > 0 somewhere in 0 < z < H (see ( 2 . 9 ~ ) ) .  

I n  the mixed layer, 0 < z < H ,  (2.7d) shows that $1 is constant, and equal to  its 
value a t  z = 0. Integration of ( 2 . 7 ~ )  and application of the boundary condition a t  
z = H then shows that 

where 

(2.12 b) 

For simplicity we shall assume that there are no critical layers, and so w =I= f for any 
value of z. Applying the boundary condition that tl is continuous a t  z = 0, it 
follows that 

R _ Y + l  
I y-1 ’  

where 

( 2 . 1 3 ~ )  

(2.13b) 

Equation (2.13a) agrees with the result obtained by Stern (1977), and shows that 
over-reflection occurs whenever 

Re (y) > 0. (2.14) 

In  particular, resonant ovor-reflection (I = 0), occurs when y = 1 .  The vertical 
wave action flux is readily evaluated from (2.8) and ( 2 . 1 2 ~ ) ;  in particular, a t  z = 0, 

B, = 1 2m‘’ “ R e  (y). 
Po N2 

(2.15) 

Since aB, < 0 for over-reflection and am < 0 (2.10c), this confirms (2.14) as the 
condition for over-reflection. From an examination of (2.12b) and (2.13b) it  is 
apparent that for (2.14) to be satisfied the wavenumber vector K = (k, 1)  must have 
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a component normal to the basic shear flow uo(z). Further, following Stern (1977), 
if we suppose that the basic she& flow is small, (i.e. IK.U,I 4 If I), then an expansion 
of (2.12b) and (2.13b) shows that 

(2.16) 

where we have used the Ekman transport relation (2.2). Recalling (2.10c), i t  follows 
that there is over-reflection for CTK-Z < 0, i.e. for waves travelling upwind. 

To make further progress in analysing (2.13b) we at first assume that the waves 
are normal to the shear flow and set wo(z) = 0 and k = 0. Then w (2.7e) is identically 
equal to a constant, u, and (2.12b) and (2.13b) become 

(a )  ‘Slab’Jlow. Suppose further that  uo(z) is a constant Us throughout 0 < z < H, 
except in a very thin layer near z = 0. This case was considered by Stern (1977), who 
showed that (2.17b) can be approximated by 

y = imHexp{ -ifZUs(az-_f2)-1}. (2.18) 

Resonant over-reflection occurs for 

7c 37c 57c f l u s  =+- +- +-,... 
a 2 - f L  - 2 ’ -  2 ’ -  2 

and 
m H = f l .  

( 2 . 1 9 ~ )  

(2.19b) 

I n  figure 2(a) we show a contour plot of IR/II ( 2 . 1 3 ~ )  as a function of la/fl and ZH. 
Note that resonant over-reflection occurs a t  a decreasing sequence of frequencies 
slightly greater than the inertial, and a corresponding decreasing set of wavenumbers. 
However, these points are interspersed with points of resonant absorption where 
(R/I (  = 0 and y = - 1 .  For this special case D (2.9b) is zero throughout the mixed 
layer, except a t  z = 0, where i t  has a &function singularity; as a consequence B, is 
zero throughout the mixed layer, and then jumps to a non-zero value at z = 0. The 
source of the over-reflection is thus the strong shear a t  the base of the mixed layer. 

( b )  Linear shear. Next suppose that uo(z) = UzH-’ in 0 < z < H. It follows from 
(2.17a, b )  that 

(2.20) 

Over-reflection occurs for uf ZU < 0, and the conditions for resonant over-reflection 
are 

and 
7c 37c 57c 
2 ’ -  2 ’ -  2 

m H = _ + -  +- +--,.... 

(2.21 a) 

(2.21 b) 

In  figure (2(b) we show a contour plot of IR/Il ( 2 . 1 3 ~ )  as a function of Iu/J and ZH. 
Note that, resonant over-reflection now occurs a t  the single frequency a,, where 

(2.22) 
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FIGURE 2. A contour plot of the reflection coefficient IR/II as a function of Ig/fl and ZH. (a )  ‘Slab’ 
flow, uo(z) = U s ;  ( b )  linear shear, uo(z) = UzH-’. In both cases N = 3.1 x s-l, 
H = 50 m and (a) Us = 4 cm s-l, ( b )  U = 8 cm s-l. Circles (0) and crosses ( x ) indicate points of 
resonant over-reflection and absorption respectively. 

s-l, f = 
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For N = 3.1 x s-l and H = 50 m, la,f'l = 1.0327. 
Corresponding to this single frequency for resonant over-reflection there is now an 
increasing set of wavenumbers; this result is quite different from that of case (a ) .  
Resonant absorption also occurs a t  the single frequency rc a t  precisely those 
wavenumbers of opposite sign to the wavenumbers for resonant over-reflection. 

(c) 'Slab' $ow with linear shear. Finally, suppose that u o ( z )  is constant and equal 
to Uo(6)  in 6 < z < H ,  and that uo(z) = U0z6-' in 0 < z < 6. This case includes the 
two previous cases; when S-tO we recover case (a) where Uo(0) = Us, and when 6+ H 
we recover case (b)  where Uo(H)  = U.  It follows from (2.17a, b )  that 
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s-l, IUI = 8 cm s-l, f = 

y = -  m H [ 6  @ H  -+ {i(l-g)@-;}exp(-i@) 1 , 
where 

The condition y = 1 for resonant over-reflection is thus 

H - 6  
s tan$ = --@ 

and 

( 2 . 2 3 ~ )  

(2.23 b) 

(2.24a) 

(2.24 b )  

Here the sign of the square root is that  of cos @ (or equivalently of -@sin $). When 
6+0 or H these conditions reduce to (2.19a, b)  and (2.21a, b )  respectively. In order 
to examine the transition between these limiting cases, we first normalize by putting 
Uo(6) = US(l-S/2H)-l, so that for all values of 6 the total transport in the mixed 
layer is HU,; note that U in case (b )  is then ZU,. In figure 3 we show a plot of the 
location of the points of resonant over-reflection in the (u, 1)-plane as a function of 
6 ;  also shown are the points of resonant absorption which are determined from 
(2.24a, b) with the right-hand side replaced with - 1. Note that when 6+0 resonant 
over-reflection can occur for both signs of 1 (with u > 0), but that when 6+H 
resonant over-reflection occurs only for a1 < 0. Thus when ul < 0 the points of 
resonant over-reflection connect smoothly as S/H increases from 0 to 1. However, 
for crl > 0 the points of resonant over-reflection move to infinity (with u2lF1 remaining 
constant) ; of course these branches are ultimately outside the range of the model, 
which requires uz + N2.  

Equation (2.11) and the discussion that follows that equation show that it is the 
non-conservation of wave action flux within the mixed layer which provides the 
mechanism for over-reflection. Further, (2.9a) shows that it is the 'dissipative ' term 
D (2.96) that allows for divergence of wave action flux. This is in strong contrast to 
most previous examples of over-reflection for which a critical layer is needed to 
provide a source of wave action flux (see Acheson 1976; McIntyre & Weissman 1978). 

Note that here D is non-zero only because the basic flow uo(z) is maintained by 
the stress Fo(z), which in turn is a parametrization of the turbulent Reynolds stress 
induced by the wind stress 2. In  figure 4 (a) we show the distribution of the wave-action 
flux B,, and the dissipative term D, for various values of 6 / H .  Note that B, must 
be zero a t  z = H and uB3 < 0 a t  z = 0, and is constant in z < 0. It is clear that for 
the examples we consider it is the shear a t  the base of the mixed layer which is the 
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FIGURE 3. A plot of the points of resonant over-reflection (-), and 
absorption (---) as functions of Iu/fl and ZH for various values of 6, 
6 < z < H ,  and U,zS-’ in 0 < z < 6 (case c).  In all cases N = 3.1 x 0, 
and Us = 4 cm s-l, where U,(S) = U,(1 -6/2H)-’. 

the points of resonant 
where u,(z) = U,(S) in 
f = low4 s-l, H = 50 m 

source for the over-reflection. By contrast, we also show in figure 4 ( b )  the distribution 
of B, and D for regular reflection when IR/Il = 1 ; in this case B, must be zero in z < 0. 

3. Wave action equation 
In  this section we propose to discuss the mechanism of over-reflection in a more 

general setting than that of $2. First suppose that 5, etc. depend smoothly on the 
ensemble parameter 8 such that 

51(4x, y,z;8+24 = C , ( t , ~ , Y > z ; B ) .  (3.1) 

This definition includes, but is more general than, the solutions (2.6a) discussed in 
$2. We then define the averaging operator 

<...)=-j 1 (...)do. 

27c 0 

I F L X  141 
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FIGURE 4. A plot of the vertical wa,ve action flux B, and the ‘dissipative’ term D in the mixed 
layer for various values of 8, where u,,(z) is case (c) (see caption for figure 3). (a )  Resonant 
over-reflection; ( b )  regular reflection. In  both cases only the branch corresponding to the smallest 
value of ( 2 . 2 3 b )  is shown. 

The averaging operator commutes with derivatives such as a / a t  etc., and has other 
obvious properties (see Andrews & McIntyre 1978a). The wave action equation can 
now be obtained as a special case of the general theory of Andrews & McIntyre 
(19786), or, more directly, by multiplying (2 .5~1-c)  with atJaO, ar,/aO and ag,/aO 
respectively, averaging, and adding the resultant equations. The result is 

where 

(3 .3a)  

(3 .3b )  

B = ( p 1 3 ) ,  (3.3c) 
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and 
(3 .3d)  

Here B has components (Bl ,  B,, B,), and t1 is the Lagrangian particle displacement 
with components (tl,ql,<l). A is the wave action density, and B is the wave action 
flux. D is the ‘dissipative’ term, and is non-zero only because the basic shear flow 
is maintained by the stress Fo (see (2.1)). For the special case of $2 when 6, etc. are 
given by (2.6a),  it  is readily verified that B, reduces to (2.8), D is given by (2 .9b) ,  
and the wave action equation ( 3 . 3 ~ )  reduces to ( 2 . 9 ~ ~ ) .  

As we have shown in $ 2 ,  i t  is the presence of the ‘dissipative’ term D which is 
responsible for over-reflection. Using (2.1),  D ( 3 . 3 4  can be cast in the form 

(3 .4)  

Hence for D to be non-zero, the horizontal particle displacement must have a 
component in the direction of a2F0/az2, and this component must be out of phase with 
the vertical particle displacement. 

To obtain an equation describing wave energy and its interaction with the basic 
shear flow, we multiply (2.5a, b ,  c) with Dtl/Dt, Dy,/Dt and D&/Dt respectively, 
average the result, and add the resultant equations. We obtain 

where 

and 

(3 .5a)  

(3 .5b)  

( 3 . 5 c )  

( 3 . 5 d )  

(3 .5e )  

Here E is the wave energy density and F is the wave energy flux. R,, and R,, are 
components of the radiation stress tensor (see Andrews & McIntyre 1978a), while DE 
is the ‘dissipative’ term. For the special case of $2 when 5, etc. are given by (2.6a), 
it may be shown that l( = wB,, DE = W D  and R,, = kB,, R,, = lB,. The wave energy 
equation ( 3 . 5 ~ )  is readily seen to be equivalent to the wave action equation ( 3 . 3 a )  
in this special case, but is clearly less instructive as wave energy is exchanged with 
the basic flow both through the radiation stress terms and the ‘dissipative’ term. 

4. Wave-induced mean flow 
In  this section we shall complement the discussion of $ 3  by calculating the 

wave-induced mean flow. In  the Boussinesq and hydrostatic approximations, the 
Eulerian equations of motion are 

1 ap 1 aFo dv 1 ap 1 aGo - - f 2 l + ~ ~  = K q  -+fu+-- dt = -__ (4.1 a ,  b)  
du 
dt PoaY’ Po ’ 
1 aP dr au av aw _ _  , + r  = 0, - - -N2(z’ )w = 0, -+-+- = 0, 

Po dt ax ay aZ (4.1 c-e) 

7-2 



190 M .  Kamachi and R .  Grimshaw 

where 

Here x‘ with components (x‘, y’, 2’) is the Eulerian coordinate such that the fluid 
particle a t  x‘ has velocity u ;  r is the buoyancy g(p--p,)/p,. The wave-induced mean 
flow could now be calculated by averaging these equations, and then calculating the 
Reynolds stresses and buoyancy fluxes to the second order in wave amplitude from 
the results of $ 2 .  

However, i t  is more revealing to adapt the generalized Lagrangian-mean formulation 
of Andrews & McIntyre (1978a). Thus let x be a generalized Lagrangian coordinate, 
and let <(t, x) be the particle displacement defined so that 

x’ = x+<. ( 4 . 2 )  

Then, for any given velocity field u there is a unique Lagrangian-mean velocity uL 
such that when the point x moves with velocity UL the point X‘ moves with velocity 
u,  and such that 

( 5 )  = 0. (4.3) 

Here we recall that the averaging operation has been defined by (3 .2) .  With these 
definitions the material time derivative (4. if) becomes 

Since the Eulerian flow is incompressible (see (4.1 e ) ) ,  i t  follows that 

I ~ J  auL avL a w L  

~ d t  ax ay aZ 

J = det [axi/axl 

_ _  +-+-++=o, 

where 

(4.5a) 

(4.56) 

is the Jacobian of the mapping from x to  x‘, and is itself a mean quantity. Equation 
(4.5a) shows that the Lagrangian-mean velocity is generally divergent. Next we 
define Kij  as the (i,j)-cofactor of J ,  and so 

It may then be shown that the momentum cquations (4.1 a-c) become 

d V  i a  
-+,fu+-- (pK,J = fuo(2’), 
dt Po Jaxj 

Po Jaxj 

l a  + r = 0. -- 

(4.7a) 

(4.7b) 

(4.7c) 

Together with (4.1 d )  and (4 .5a)  these form the Lagrangian equations. Note that 
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The Lagrangian-mean equations are now obtained by averaging these equations. The 
result for (4.7a, b )  is 

where 

(4.9a) 

(4.9b) 

is the radiation stress tensor. Note that the last terms in (4.9a, b )  are 'dissipative' 
terms, which appear explicitly in the Lagrangian-mean formulation, but would not 
appear explicitly in the Eulerian-mean formulation. The remaining three equations 
are ( 4 . 5 ~ )  and the average of (4.ld) and ( 4 . 7 ~ ) ;  these latter two will not be needed 
in the sequel and serve only to determine the mean pressure and buoyancy. 

If a is a measure of wave amplitude, we then write 

( 4 . 1 0 ~ )  u = u0(z)+----1+O(a2) etc. 

Then, to O(a) ,  it may be verified that the linearized equations ( 2 . 5 ~ 4 )  can be 
obtained from (4.7a-c). Next let 

De 
Dt 

uL = u ~ ( z ) + U ~ + O ( U ~ )  etc. 

Then (4.9a, b)  become, to O(a2) ,  

(4.10b) 

where 

( 4 . 1 1 ~ )  

Note that the radiation stress tensor R, defined by (4.11 c) agrees with that obtained 
in the wave energy equation (see ( 3 . 5 4 ) .  The total energy equation is obtained by 
multiplying (4.11a, b )  by uo and vo respectively, multiplying (2.1) by Gk, and adding 
the result to the wave energy equation ( 3 . 5 ~ )  : 

Note here that to  

(4.13) 

The mean-flow equations (4.11a, b )  and the energy equation (4.12) together demon- 
strate how the wave-induced mean flow combines with the wave energy to provide 
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the mechanism for over-reflection. Note in particular that  for over-reflection the total 
vertical energy flux must be directed downwards, and the source for this flux is the 
‘dissipative’ term on the right-hand side of (4.12). 

I n  order to illustrate further the role of these equations, we next consider the special 
case when all mean quantities depend only on t and z ;  this is more general than the 
case discussed in $ 2  when the wave quantities are given by ( 2 . 6 ~ )  and mean quantities 
depend only on z .  For this special case ( 4 . 5 ~ )  reduces to 

(4.14) 
a 2  

iE: = - (g). 
at a2 

Here we have applied the boundary condition that w k  must vanish a t  z = H.  Next 
we observe that R,, = kB, and R,, = lBj, where we are assuming that the x- and 
y-dependences of the wave-like quantities are given by expressions of the form ( 2 . 6 ~ ) .  
Thus the radiation stress terms in (4.11 a ,  b )  can be eliminated using the wave action 
equation ( 3 . 3 ~ ) .  We find that 

These equations show that for steady waves the wave-induced mean flow (G,“, 3:) is 
non-zero only because of the ‘dissipative’ terms on the right-hand side of (4.15a, b ) .  
This result is analogous to the Charney-Drazin theorems in stratospheric meteorology. 
The total energy equation becomes 

1 :z 
a a 

at a {  a Z  aZ - po ~ ~ * i i i  + E+- (BG) - (ip, U: +$I~ v;) +- {F, + (ku, + ZV,) B,} = . . . . (4.16) 

Here the right-hand side is the same as that in (4.12). For steady waves 

F, + (ku, + Zv,) R, = uB,, (4.17) 

and the right-hand side of (4.16) is CTD. The total energy equation in this instance 
reduces to the wave action equation, and again emphasizes the role that D plays in 
the mechanism of over-reflection. 

5. Linear stability theory 
Up to this point we have assumed that the perturbations to the basic flow consist 

only of neutral waves. In  this section we shall examine the stability of the basic flow 
by searching for solutions of the linearized equations ( 2 . 5 a d ) ,  which have the form 
(2.6a, b ) ,  where the wavenumber ( E , Z )  is real but the frequency u = u,+in, is 
complex. For instability we require that ui > 0. In  z < 0 the solution is given by 
( 2 . 1 0 ~ )  with I = 0, and m = m,+imi given by (2.10b),  with mi > 0. The calculations 
of $2  which led to (2.13a, b )  remain valid when vi += 0, and thus, since I = 0 here, 
instability is determined by the condition 

y =  1 ,  (5.1) 

where y is given by (2.13h). Since, when vi = 0, this is precisely the condition for 
resonant over-reflection, we can anticipate that there may be instability for those 
points in the (ur, I)-plane that are close to points of resonant over-reflection. In  a 
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similar way, damped waves with ui < 0 can be sought with the solution given by 
( 2 . 1 0 ~ )  with R = 0 and mi < 0 ;  these damped waves are therefore given by the 
condition y = - 1 (see ( 2 . 1 3 ~ )  with R = O ) ,  and we can anticipate that they will exist 
in the (a,., &plane close to points of resonant absorption. 

For small G - ~  (i.e. close to  points of resonant over-reflection or resonant absorption) 

mi x CTi v-1, ( 5 . 2 )  

where V = au/am evaluated at  ai = 0 is the vertical group velocity. Since our sign 
conve&ion requires V to be positive (see (2.11) and the following discussion), it  
follows &at ai and wii have the same sign in accord with the discussion above. Also 
t,he trapping scale for unstable or damped waves is O( VaC1) (for a more extensive 
discussion of this aspect see McIntyre & Weissman 1978). 

If (go, 1,) is a point in the (a, 1)-plane for resonant over-reflection, then for a point 
(v, I )  we may solve (5.1) approximately when 6a and 62 are small, where 

6u = u-G-, = 6a,+i6ui, 

61 = 1-1,. 

For the two special cases (a)  and ( b )  of $ 2  the results are as follows. 

(a)  ‘SZab’Jlow (u,(z)  = Us in 0 < z < H ) :  

where 
fZ,U, - x 3n 5n 

@ s = =  -+- 2 ’ - 2 ’ - 2  +- +-,... 

( b )  Linear shear $ow (u,(z) = UzH-l in 0 < z < H )  : 

where 

$, = = +x, +3x, 1 5 x ,  ... 

(5 .3 )  

(5.4a) 

(5.4b) 

(5.4c) 

(5.5a, b )  

( 5 . 5 c )  

These results, in particular (5 .4b )  and (5.56), show that points (a,, I,) for resonant 
over-reflection are the endpoints of a curve in the (v, &plane representing unstable 
waves. Since Sui > 0 for instability, the unstable branch is one-sided in a neigh- 
bourhood of (G-,, l o ) ,  and must terminate there. A similar analysis for damped waves 
shows that these emanate from points for resonant absorption. 

The continuation of the curves in the (u,l)-plane for the unstable and damped 
waves can be determined numerically from (5.1),  and the results for the special cases 
(a)  and ( b )  of $ 2  are shown in figures 5 ( a ,  b )  respectively. In  both cases ( a )  and ( b ) ,  
the growth rates are very small (for instance, in case ( a )  the maximum growth rate 
ai z 0.001 I f 1  when N = 3.1 x lop3 s-l, lU,l = 4.0 cm s-l and H = 50 m), and the 
maximum growth rate occurs for smaller values of JlHI than the corresponding value 
11, HI for resonant over-reflection. In  both cases ( a )  and ( b )  the maximum growth rate 
occurs for that branch with the smallest value of \@,I or lp0l respectively. 



194 

5 
f 

M .  Kamachi and R. Grimshaw 

F 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
l.O1 t / 

1 I 
-0.005 0 0.005 

IH 

FIGURE 5(a ,  b ) .  For caption see facing page. 

Since these unstable waves have small growth rates they will also have large 
trapping scales and will extend a considerable distance into the deep ocean. In  
practice they may be indistinguishable from the untrapped waves generated by the 
over-reflection mechanism at the base of the mixed layer. 

Finally the unstable waves considered here should not be confused with the 
unstable waves that would occur when an over-reflected wave is reflected off bottom 
topography, and propagates upwards, only to be over-reflected again from the base 
of the mixed layer. Successive repetition of this process leads to  temporally growing 
waves (for a discussion of this process for internal waves in the atmosphere see 
Lindzen & Rosenthal 1976). Mollo-Christensen (1977) has analysed one aspect of this 
problem when the base of the mixed layer is modelled as a vortex sheet, and suggested 
that near-inertial waves may be unstable. The dispersion relation for this second class 
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FIGURE 5.  A plot of the points representing unstable waves (-) and points representing damped 
waves (---) as functions of u,/f or uJf, and ZH. Circles (0) and crosses ( x ) indicate the points 
of resonant over-reflection and absorption respectively for neutral waves. (a)  a,/f for ‘slab’ flow, 
uo(z) = U s ;  (b )  ui/f for ‘slab’ flow; ( c )  u,/f for linear shear flow, uo(z) = UzH-’; (d )  ai/f for linear 
shear flow. 

of unstable waves can be determined from the work of $ 2  by imposing a rigid 
boundary at z = - h and requiring that given by (2.10a) should vanish there. Thus 

R 
- I = -exp (-2imh), (5.6) 

and substituting this into ( 2 . 1 3 ~ )  leads to the dispersion relation 

iy = tanh mh. (5.7) 

We shall not attempt to solve this dispersion relation here. However, for the oceanic 
case when h $ H ,  we anticipate that the growth rates associated with this second class 
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of unstable waves will be O ( H / h )  relative t o  the growt,h rates for the first class of 
unstable waves shown in figures 5(a ,  b ) .  
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